Name:			
Instruct	or.		

Math 10560, Exam Questions 8.1 February 18, 3000

- For realistic exam practice solve these problems without looking at your book
- and without using a calculator.
- Multiple choice questions should take about 4 minutes to complete.
- Partial credit questions should take about 8 minutes to complete.

PLE	ASE MARK	YOUR AN	SWERS WIT	H AN X, not a	a circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)

Name: _____ Instructor:

Multiple Choice

1.(6 pts) Which integral below gives the area inside the polar curve $r = \sin(3\theta)$?

(a)
$$\frac{1}{2} \int_0^{\pi} \sin^2(3\theta) \ d\theta$$

(b)
$$\frac{1}{2} \int_0^{\pi} \sqrt{\sin^2(3\theta) + 9\cos^2(3\theta)} \ d\theta$$

(c)
$$\frac{1}{2} \int_0^{2\pi} \sqrt{\sin^2(3\theta) + 9\cos^2(3\theta)} \ d\theta$$
 (d) $\frac{1}{2} \int_{\pi/6}^{\pi/3} \sin^2(3\theta) \ d\theta$

(d)
$$\frac{1}{2} \int_{\pi/6}^{\pi/3} \sin^2(3\theta) \ d\theta$$

(e)
$$\frac{1}{2} \int_0^{2\pi} \sin^2(3\theta) \ d\theta$$

Name: _______
Instructor: ______

2.(6 pts) Find the area of the region enclosed by the polar curve $r = \cos(2\theta)$, $0 \le \theta \le 2\pi$. (Note: The formula sheet may help here.)

- (a) 2
- (b) $\frac{\pi^2}{2}$
- (c) π
- (d) $\frac{\pi}{2}$
- (e) 2π

Name: _____

Instructor:

3.(6 pts) Find the area of the region enclosed by the polar curve

$$r = \sin(3\theta), \quad 0 \le \theta \le \pi.$$

(Note: The formula sheet may help here.)

- (a)
- (b) $\frac{\pi}{3}$
- (c)
- (d)
- (e) 3

4.(6 pts) Find the area inside the cardioid $r = 2 + 2\cos\theta$.

- (a) 6π
- (b)
- (c) 8π
- $3\pi + \ln 4$ (e) 6 (d)

Name: ______Instructor:

5.(6 pts) Which integral below gives the arc length of the polar curve $r = \sin \theta \cos \theta$ for $0 \le \theta \le \pi$?

(a)
$$\int_{0}^{\pi} \sqrt{\sin^2 \theta + \cos^2 \theta - \sin \theta \cos \theta} \ d\theta$$

(b)
$$\int_{0}^{\pi} \sqrt{1 + \sin^4 \theta + \cos^4 \theta - 2\sin^2 \theta \cos^2 \theta} \ d\theta$$

(c)
$$\int_{0}^{\pi} \frac{1}{2} \sin^{2} \theta \cos^{2} \theta \ d\theta$$

(d)
$$\int_{0}^{\pi} \sqrt{\sin^{4} \theta + \cos^{4} \theta - \sin^{2} \theta \cos^{2} \theta} d\theta$$

(e)
$$\int_{0}^{\pi} \sqrt{1 + \sin^2 \theta \cos^2 \theta} \ d\theta$$

6.(6 pts) Find the arc length of the curve with polar equation: $r = 2 - 2\cos\theta$, $0 \le \theta \le 2\pi$.

- (a) 34
- (b) 12
- (c) 8
- (d) 16
- (e) 32

Name: ______
Instructor:

7.(6 pts) The area inside the curve $r = 3 + 2\cos\theta$ and outside the circle r = 2 is given by which integral below?

Hint: The region is symmetric with respect to the x-axis.

(a)
$$\int_0^{\frac{2\pi}{3}} \left(12 + 5\cos\theta + 4\cos^2\theta\right) d\theta$$

(b)
$$\int_0^{\frac{\pi}{3}} \left(5 + 12\cos\theta + 4\cos^2\theta\right) d\theta$$

(c)
$$\int_0^{\frac{\pi}{3}} \left(12 + 5\cos\theta + 4\cos^2\theta \right) d\theta$$

(d)
$$\frac{1}{2} \int_0^{\frac{2\pi}{3}} \left(5 + 12\cos\theta + 4\cos^2\theta\right) d\theta$$

(e)
$$\int_0^{\frac{2\pi}{3}} \left(5 + 12\cos\theta + 4\cos^2\theta\right) d\theta$$

8.(6 pts) Find the slope of the tangent line to the curve $r = 3 \sin \theta$ at $\theta = 0$. **Hint:** A polar curve is also a parametrized curve.

- (a) -1
- (b) 1
- (c) 2
- (d) π
- (e) 0

Name: Instructor:

9.(6 pts) Find the arc length of the curve with polar equation:

$$r = \theta^2$$
 for $0 \le \theta \le 2\pi$.

(a)
$$16(\pi^{3/2} - 1)$$

(b)
$$\frac{8}{3} ((\pi^2 + 1)^{3/2} - 1)$$
 (c) $4\sqrt{2\pi}$

(c)
$$4\sqrt{2\pi}$$

(d)
$$\frac{2}{3}\pi^{3/2}$$

(e)
$$\frac{1}{8} \left(\sqrt{\pi^2 + 1}^{-1} - 1 \right)$$

Name:		_
Instructor:		

The following is the list of useful trigonometric formulas:

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin 2x = 2\sin x \cos x$$

$$\sin x \cos y = \frac{1}{2}(\sin(x - y) + \sin(x + y))$$

$$\sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

$$\int \sec \theta = \ln|\sec \theta + \tan \theta| + C$$

Name:			

Instructor: <u>ANSWERS</u>

Math 10560, Exam Questions 8.1 February 18, 3000

- For realistic exam practice solve these problems without looking at your book
- and without using a calculator.
- Multiple choice questions should take about 4 minutes to complete.
- Partial credit questions should take about 8 minutes to complete.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(ullet)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(ullet)	(e)
3.	(a)	(b)	(●)	(d)	(e)
4.	(•)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(ullet)	(e)
6.	(a)	(b)	(c)	(●)	(e)
7.	(a)	(b)	(c)	(d)	(ullet)
8.	(a)	(b)	(c)	(d)	(•)
9.	(a)	(ullet)	(c)	(d)	(e)